Course Home Page – STOR 892 – OODA – Marron

Class Notes:

  1. Tuesday, August 19, 2014 – STOR892-8-19-2014  – Organizational Matters – What is OODA? – Visualization by Projection – Object Space and Descriptor Space – Curves as Data Objects – Data Representation Issues – PCA Visualization – PCA Terminology
  2. Thursday, August 21, 2014 – STOR892-8-21-2014 – Mortality Data Time Series of Curves & Color Coding – Chemo-metric Data – Glioblastoma Data & Brushing – Limitations of PCA – NCI 60 Data – Directions Beyond PCA
  3. Tuesday, August 26, 2014 – STOR892-8-26-2014 – Directions Beyond PCA, Fourier Basis Directions, Gene Cell Cycle Data Analysis, DWD, Batch Adjustment
  4. Thursday, August 28, 2014 – STOR892-8-28-2014 – Matlab Software (Example Script File: VisualizeNextGen2011.m), Cornea Data, Robustness, Spherical PCA
  5. Tuesday, September 2, 2014 – STOR892-9-02-2014 – Elliptical PCA & Cornea Data, Big Picture PCA, Correlation PCA, Melanoma Data, Transformations, Marginal Distribution Plot, Clusters
  6. Thursday, September 4, 2014 – STOR892-9-04-2014-part1 – STOR892-9-04-2014-part2 – Smoothing: Density and Regression Estimation, Hidalgo Stamp Data, Kernel Density Estimation, Fossils Data, Local Linear Smoothing, SiZer, Data Examples: Internet, British Family Incomes, Yeast Cell Cycle
  7. Tuesday, September 9, 2014 – OODA-JieXiong – Jie Xiong: Radial Distance Weighted Discrimination
  8. Thursday, September 11, 2014 – STOR892-9-11-2014 – Finish Mass Flux & Cell Cycle Data, Big Picture PCA, Linear Algebra Review
  9. Tuesday, September 16, 2014 – STOR892-9-16-2014 – Continue Review of Linear Algebra, Eigen-analysis solution of Matrix problems, Multivariate Probability Review, PCA as Optimization, Connect Math to Graphics, PCA Redistribution of Energy,
  10. Thursday, September 18, 2014 – STOR892-9-18-2014 – PCA Data Representation & Simulation, Alternate PCA Calculation, Dual PCA, Classification / Discrimination
  11. Tuesday, September 23, 2014 – STOR892-9-23-2014-part1, STOR892-9-23-2014-part2  – Fisher Linear Discrimination (Intuitive & Likelihood Derivation), Gaussian Likelihood Ratio, Principal Discriminant Analysis, HDLSS Discrimination, Maximal Data Piling
  12. Thursday, September 25, 2014 – STOR892-9-25-2014-JIVE-QingFeng – Qing Feng – Joint and Individual Variation Explained
  13. Tuesday, September 30, 2014 – STOR892-9-30-2014-CSPCA-DiMiao – Di Miao – Class Sensitive PCA
  14. Thursday, October 2, 2014 – Patrick Kimes – Sig-Clust & Sig Fuge
  15. Tuesday, October 7, 2014 – STOR892-10-07-2014-Part1 STOR892-10-07-2014-part2 STOR892-10-07-2014-part3 – Maximal Data Piling, Kernel Embedding –  PP:  John Palowitch {Network Statistics}, Eduardo Garcia {KDE for Spherical data}
  16. Thursday, October 9, 2014 – STOR892-10-09-2014 – Kernel Embedding, Support Vector Machine –  PP: Guan Yu {Sparse regression & Graphical Structure}
  17. Tuesday, October 14, 2014 – STOR892-10-14-2014  – Support Vector Machine, Distance Weighted Discrimination –  PP: Hyowon An {Finding MLE of normal mixture models}, Robert Corty {Modeling population structure — from PCA to mixed models}
  18. Thursday, October 16, 2014 – No Class, Fall Break
  19. Tuesday, October 21, 2014 – STOR892-10-21-2014-part1 – STOR892-10-21-2014-part2 – HDLSS Discrimination Simulations, Batch Adjustment, Melanoma Data, ROC curves, Clustering – PP: Qunqun Yu {Curve Registration}
  20. Thursday, October 23, 2014 – STOR892-10-23-2014 – Hierarchical Clustering, SigClust, DiProPerm – PP: Qingyu Zhao {Data-Driven Thin Shell Deformation}, Suman Chakraborty {RandomMatrices}
  21. Tuesday, October 28, 2014 – STOR892-10-28-2014 – SigClust, QQ plots  – PP: True Price {FMRI Network Segmentation}
  22. Thursday, October 30, 2014 – STOR892-10-30-2014 – SigClust, Start HDLSS Asymptotics –  PP:  Qing Duan {Admixtures in GWAS}
  23. Tuesday, November 4, 2014 – STOR892-11-04-2014 – HDLSS Asymptotics
  24. Thursday, November 6, 2014 – STOR892-11-06-2014 – Finish HDLSS Asymptotics, Independent Component Analysis – PP: JP Hong {Shape Classification}
  25. Tuesday, November 11, 2014 – STOR892-11-11-2014 – Independent Component Analysis, HDLSS & MDLSS, Shapes as Data Objects, Equivalence Relations & Classes – PP: Natalie Stanley {Parameter Estimation in Multilayer Stochastic Block Models}
  26. Thursday, November 13, 2014 – STOR892-11-13-2014-part1STOR892-11-13-2014-part2 – Shape Representations, Manifold Data, Directional Data, Manifold Versions of PCA –  PP: Sai Balu {Identifying APOBEC Mutation Signatures on Breast Cancer Samples}
  27. Tuesday, November 18, 2014 – STOR892-11-18-2014-part1STOR892-11-18-2014-part2 – Principal Nested Spheres, Backwards PCA, Nonnegative Matrix Factorization – PP: Meilei Jiang {OODA for Microbiomes}
  28. Thursday, November 20, 2014 – STOR892-11-20-2014 – Nonnegative Nested Cone Analysis, Curve Registration – PP: Siliang Gong {Variable Selection for Ultra-High Dimensional Data}, Yang Yu {ADNI Data}
  29. Tuesday, November 25, 2014 – STOR892-11-25-2014  – Fisher Rao Approach to Curve Registration, Proteomics Data  – PP: Hyo Young Choi {NMF analysis of Genetic Sequence Data}, PP: Leo Yufeng Liu {Machine Learning}
  30. Thursday, November 26, 2014 – No Class, Thanksgiving
  31. Tuesday, December 2, 2014 – STOR892-12-02-2014PP: Rasmus Skov Knudsen {L1 PCA}, Micheal Deakin {???}

 

References:

  • Ahn, J., & Marron, J. S. (2010). The maximal data piling direction for discrimination. Biometrika, 97(1), 254-259 (cited 9/23/14, 10/7/14)
  • Ahn, J., Marron, J. S., Muller, K. M., & Chi, Y. Y. (2007). The high-dimension, low-sample-size geometric representation holds under mild conditions. Biometrika, 94(3), 760-766 (cited 10/30/14)
  • Aizerman, A., Braverman, E. M., & Rozoner, L. I. (1964). Theoretical foundations of the potential function method in pattern recognition learning. Automation and remote control, 25, 821-837 (cited 10/7/14)
  • Alfaro, C. A., Aydın, B., Valencia, C. E., Bullitt, E., & Ladha, A. (2014). Dimension reduction in principal component analysis for trees. Computational Statistics & Data Analysis, 74, 157-179 (cited 12/02/14)
  • Aydin, B., Pataki, G., Wang, H., Bullitt, E. and Marron, J. S. (2009) A principal component analysis for trees, Annals of Applied Statistics, 3, 1597-1615 (cited 12/02/14)
  • Aydin, B., Pataki, G., Wang, H., Ladha, A., Bullitt, E. Marron, J. S. (2011) Visualizing the Structure of Large Trees, Electronic Journal of Statistics, 5, 405-420 (cited 12/02/14)
  • Aydın, B., Pataki, G., Wang, H., Ladha, A., Bullitt, E., & Marron, J. S. (2012). New approaches to principal component analysis for trees. Statistics in Biosciences, 4(1), 132-156 (cited 12/02/14)
  • Bendich, P., Marron, J. S., Miller, E., Pieloch, A., & Skwerer, S. (2014). Persistent homology analysis of brain artery trees. arXiv preprint arXiv:1411.6652 (cited 12/02/14)
  • Benito, M., Parker, J., Du, Q., Wu, J., Xiang, D., Perou, C. M., & Marron, J. S. (2004)Adjustment of systematic microarray data biases. Bioinformatics, 20(1), 105-114 (cited 8/26/14 & 10/14/14)
  • Bickel, P. J. and Levina, E. (2004) Some theory for Fisher’s Linear Discriminant function, “naive Bayes”, and some alternatives when there are many more variables than observations, Bernoulli, 10, 989-1010 (cited 9/23/14)
  • Billera L, Holmes S, & Vogtmann K (2001) Geometry of the Space of Phylogenetic Trees, Advances in Applied Mathematics 27, 733–767 (cited 12/02/14)
  • Bloomfield, P. (2004) Fourier analysis of time series: an introduction. John Wiley & Sons (cited 8/26/14)
  • Bookstein, F. L. (1991). Morphometric Tools for Landmark Data, Cambridge: Cambridge University Press (cited 11/11/14)
  • Born, M. and Wolf, E. (1980) Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, Pergamon Press, New York (cited 8/28/14)
  • Boser, B. E., Guyon, I. and Vapnik, V. (1992) A Training Algorithm for Optimal Margin Classifiers, in Fifth Annual Workshop on Computational Learning Theory, ACM (cited 10/9/14)
  • Bradley, R. C. (2005). Basic properties of strong mixing conditions. A survey and some open questions. Probab. Surv. 2 107–144 (electronic). (Update of, and a supplement to, the 1986 original.)  (cited 11/4/14)
  • Brillinger, D. R. (2001). Time series: data analysis and theory (Vol. 36). Siam (cited 8/26/14)
  • Burges, C. J. C. (1998) A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 2, 121-167 (cited 10/9/14)
  • Cabanski, C. R., Qi, Y., Yin, X., Bair, E., Hayward, M. C., Fan, C., Li, J., Wilkerson, M. D., Marron, J. S., Perou, C. M. and Hayes, D. N. (2010) SWISS MADE: Standardized WithIn Class Sum of Squares to Evaluate Methodologies and Dataset Elements, PLoS ONE, 5(3): e9905.doi:10.1371/journal.pone.0009905, PMCID: PMC2845619.   (cited 10/23/14)
  • Cardoso, J.F. and Souloumiac, A. (1993) Blind beamforming for non-Gaussian signals, Radar and Signal Processing, IEEE Proceedings F, 140, 362-370 (cited 11/6/14)
  • Cates, J., Fletcher, P.T., Styner, M., Shenton, M., and Whitaker, R. T. (2007) Shape Modeling and Analysis with Entropy-Based Particle Systems, In Proceedings of Information Processing in Medical Imaging (IPMI) 2007, LNCS 4584, 333-345 (cited 11/13/14)
  • Chaudhuri, P. and Marron, J. S. (1999) SiZer for exploration of structure in curves, Journal of the American Statistical Association, 94, 807-823 (cited 9/4/14)
  • Chaudhuri, P., & Marron, J. S. (2000). Scale space view of curve estimation. Annals of Statistics, 408-428 (cited 9/11/14)
  • Cootes, T. F., Hill, A., Taylor, C. J. and Haslam, J. (1993) The use of active shape models for locating structures in medical images, Information in Medical Imaging, H. H. Barret and A. F. Gmitro, eds. Lecture Notes in Computer Science 687, 33-47, Springer Verlag, Berlin (cited 11/13/14)
  • Cristianini, N. and Shawe-Taylor, J. (2000) An Introduction to Support Vector Machines, Cambridge University Press (cited 10/9/14)
  • Damon, J., & Marron, J. S. (2013). Backwards principal component analysis and principal nested relations. Journal of Mathematical Imaging and Vision, 1-8 (cited 11/18/14)
  • DeLong, E. R., DeLong, D. M., & Clarke-Pearson, D. L. (1988). Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics, 837-845.
  • Domingos, P. & Pazzani, M. (1997) On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning, 29:103–­137 (cited 9/18/14)
  • Dryden, I.L., Mardia, K.V. (1998) Statistical Shape Analysis, Wiley, Chichester (cited 11/11/14)
  • Duda, R. O. and Hart P. E. (1973) Pattern Classification and Scene Analysis, Wiley, New York (cited 9/18/14)
  • Duda, R. O., Hart P. E. and Stork, D. G. (2001) Pattern Classification, Wiley, New York (cited 9/18/14)
  • Fan, J. & Gijbels, I. (1996) Local Polynomial Modelling and Its Applications, Chapman and Hall, London  (cited 9/4/14)
  • Fan, J., & Lv, J. (2008) Sure independence screening for ultrahigh dimensional feature space. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70(5), 849-911 (cited 10/11/14)
  • Fisher, N. I. (1983) Graphical Methods in Nonparametric Statistics: A Review and Annotated Bibliography, International Statistical Review, 51, 25-58  (cited 10/23/14)
  • Fisher, N. I., Lewis, T. and Engleton, B. J. J. (1987) Statistical analysis of spherical data, Cambridge University Press, Cambridge (cited 11/11/14)
  • Fisher, N. I. (1993) Statistical analysis of circular data, Cambridge University Press, Cambridge (cited 11/11/14)
  • Fisher, R.A. (1936) The Use of Multiple Measurements in Taxonomic Problems, Annals of Eugenics, 7, 179-188  (cited 9/23/14)
  • Fréchet, M. (1948) Les éléments aléatoires de nature quelconque dans un espace distancié, Annales de l’institut Henri Poincaré, 10, 215-310 (cited 11/11/14)
  • Gabriel, K. R. (1971) The biplot display of matrices with application to principal component analysis, Biometrika, 58, 467  (cited 9/18/14)
  • Gersho, A. and Gray, R. M. (1991) Vector Quantization and Signal Compression, Springer, New York  (cited 10/21/14)
  • Good, I. J. and Gaskins, R. A. (1980) Density estimation and bump-hunting by the penalized likelihood method exemplified by scattering and deteorite data, Journal of the American Statistical Association, 75, 42-73  (cited 9/4/14)
  • Gower, J. C. (1974) The mediancentre, Applied Statistics, 23, 466-470 (cited 8/28/14)
  • Green, D. M. and Swets, J. A. (1966) Signal Detection Theory and Psychophysics, Wiley, New York. ISBN 0-471-32420-5.  (cited 10/14/2014)
  • Haldane, J. B. S. (1948) Note on the median of a multivariate distribution, Biometrika, 35, 414-415 (cited 8/28/14)
  • Hall, P., Marron, J. S., & Neeman, A. (2005). Geometric representation of high dimension, low sample size data. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(3), 427-444. (cited 10/29/14)
  • Hampel, F. M., Ronchetti, E. R., Rouseeuw, P. J. and Stahel, W. A. (1986) Robust Statistics: the Approach Based on Influence Functions, Wiley, New York (cited 8/28/14)
  • Hannig, J., Marron, J. S., & Riedi, R. (2001). Zooming statistics: Inference across scales. Journal of the Korean Statistical Society, 30(2), 327-345 (cited 9/4/14)
  • Hartigan, J. A. (1975) Clustering Algorithms, Wiley, New York  (cited 10/21/14)
  • Hastie. T. and Stuetzle, W. (1989) Principal curves, Journal of the American Statistical Association, 84, 502-516 (cited 11/18/14)
  • Hotelling, H. (1933) Analysis of a Complex of Statistical Variables Into Principal Components. Journal of Educational Psychology, 24, 417-441 (cited 8/19/14)
  • Hotz, T., Huckemann, S., Le, H., Marron, J. S., Mattingly, J. C., Miller, E., … & Skwerer, S. (2013). Sticky central limit theorems on open books. The Annals of Applied Probability, 23(6), 2238-2258 (cited 2013)
  • Hsu, C.-W. and Lin, C.-J. (2002) A comparison of methods for multiclass support vector machines, IEEE Transactions on Neural Networks, 13, 415-425 (cited 10/14/14)
  • Huang, H., Liu, Y., Yuan, M. and Marron J.S. (2014) Statistical Significance of Clustering Using Soft Thresholding, Journal of Computational and Graphical Statistics, DOI:10.1080/10618600.2014.948179 (cited 10/13/2014, 10/27/14)
  • Huber, P. (1981) Robust Statistics. Wiley, New York (cited 8/28/14)
  • Hyvärinen, A. and Oja, E. (1999) Independent Component Analysis: A Tutorial,  http://www.cis.hut.fi/projects/ica (cited 11/6/14)
  • Hyvärinen, A., Karhunen, J. and Oja, E. (2001) Independent Component Analysis, John Wiley & Sons, New York (cited 11/6/14)
  • Inselberg, A. (1985) The Plane with Parallel Coordinates, Visual Computer 1: 69–91 (cited 9/2/14)
  • Inselberg, A. (2009) Parallel Coordinates: VISUAL Multidimensional Geometry and its Applications. Springer, New York (cited 9/2/14)
  • Izenman, A. J. and Sommer, C. J. (1988) Philatelic mixtures and multimodal densities, Journal of the American Statistical Association, 83, 941-953  (cited 9/4/14)
  • Jeong, J.-Y. (2009) Estimation of Probability Distributions on Multiple Anatomical Objects and Evaluation of Statistical Shape Models, Ph.D. Thesis, Department of Computer Science, University of North Carolina (cited 11/13/14)
  • Jolliffe, I. T. (2002) Principal Component Analysis, Springer, New York, 2nd Edition, ISBN 978-0-387-95442-4   (cited 9/11/14)
  • Jones, M.C., Marron, J.S. & Sheather, S.J. (1996) A brief survey of bandwidth selection for density estimation, Journal of the American Statistical Association, 91, 401-407  (cited 9/4/14)
  • Jung, S., Dryden I. L., an Marron, J. S., (2012) Analysis of Principal Nested Spheres, Biometrika, doi: 10.1093/biomet/ass022 (cited 11/18/14)
  • Jung, S., Foskey, M. and J. S. Marron, J. S. (2011) Principal Arc Analysis on direct product manifolds, The Annals of Applied Statistics, 5, 578-603   (cited 11/13/14)
  • Jung, S. X. Liu, X., Marron, J. S. and S. M. Pizer, S. M. (2010) Generalized PCA via the backward stepwise approach in image analysis, Brain, Body and Machine,Proceedings on an International Symposium on the Occasion of the 25th Anniversary of the McGill Centre for Intelligent Machines, Montreal, (J. Angeles, et al., eds.), Springer, New York, 111-123 (cited 11/18/14)
  • Jung, S. and Marron, J. S. (2009), PCA consistency in high dimension, low sample size context, The Annals of Statistics 37, 4104-4130  (cited 11/04/14)
  • Jung, S., Sen, A. and Marron, J. S. (2012), Boundary behavior in high dimension, low sample size asymptotics of PCA, The Journal of Multivariate Analysis,109, 190–203  (cited 11/04/14)
  • Kaufman, L. and Rousseeuw, P. J. (2005) Finding Groups in Data: An Introduction to Cluster Analysis, Wiley, New York  (cited 10/21/2014)
  • Keleman, A. Szèkely, G. and Gerig, G. (1997 & 1999) Three dimensional model-based segmentation, TR-178 Technical Report Image Scinec Lab, ETH Zurich & Elastic model-based segmentation of 3-D neuroradiological daat sets, IEEE Transactions on Medical Imaging, 18, 828-839 (cited 11/13/14)
  • Kendall, D.G., Barden, D., Carne, T.K. and Le, H. (1999) Shape and Shape Theory, Wiley, Chichester (cited 11/11/14)
  • Kimes, P. K., Cabanski, C. R., Wilkerson, M. D., Zhao, N., Johnson, A. R., Perou, C. M., Makowski, L., Marron, J. S., Hayes, D. N. (2014) SigFuge: single gene clustering of RNA-seq reveals differential isoform usage among cancer samples, Nucleic Acids Research (2014): gku521 (cited 8/21/14)
  • Koch, I., Hoffmann, P., & Marron, J. S. (2014). Proteomics profiles from mass spectrometry. Electronic Journal of Statistics, 8(2), 1703-1713 (11/25/14)
  • LeBlanc, M., & Tibshirani, R. (1996). Combining estimates in regression and classification. Journal of the American Statistical Association, 91(436), 1641-1650 (cited 11/18/14)
  • Lee, D. D., & Seung, H. S. (1999). Learning the parts of objects by non-negative matrix factorization. Nature, 401(6755), 788-791 (cited 11/18/14)
  • Lee, T. W. (1998) Independent Component Analysis: Theory and Applications, Kluwer (cited 11/6/14)
  • Lee, Y., Lin, Y. and Wahba, G. (2004) Multicategory Support Vector Machines, Theory, and Application to the Classification of Microarray Data and Satellite Radiance Data, Journal of the American Statistical Association, 99, 67-81 (cited 10/14/14)
  • Li, G. and Chen, Z. (1985) Projection pursuit approach to robust dispersion matrices and principal components: primary theory and Monte Carlo, Journal of the American Statistical Association, 80, 759-776 (cited 8/28/14)
  • Lindeberg, T. (1994) Scale Space Theory in Computer Vision, Kluwer, Boston (cited 9/4/14, 9/11/14)
  • Liu, R. Y. (1990). On a notion of data depth based on random simplices. The Annals of Statistics, 18(1), 405-414 (cited 8/28/14)
  • Liu, X., Parker, J., Fan, C. Perou, C. M. and Marron, J. S. (2009) Visualization of Cross-Platform Microarray Normalization, in Batch Effects and Noise in Micorarray Experiments: Source and Solutions (A. Scherer, ed.), Wiley, New York, 167-181.
  • Liu, Y., Hayes, D. N., Nobel, A. and Marron, J. S. (2008) Statistical Significance of Clustering for High Dimension Low Sample Size Data, Journal of the American Statistical Association, 103, 1281-1293  (cited 10/23/14)
  • MacQueen, J. B. (1967) Some Methods for Classification and Analysis of Multivariate Observations, Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability, 281-297, University of California Press, Berkeley  (cited 10/21/14)
  • Mardia, K. V.  (1972) Statistics of Directional Data,  Academic Press, London (cited 11/11/14)
  • Mardia, K. V. and Jupp, P. E. (2000) Directional Statistics, Wiley, New York (cited 11/11/14)
  • Maronna, R. Martin, D., and Yohai, V. (2006) Robust Statistics: Theory and Methods, Wiley, New York (cited 8/28/14)
  • Marron, J. S. & Alonso, A. M. (2014) Overview of object oriented data analysis, Biometrical Journal (cited 8/19/14)
  • Marron, J. S., Ramsay, J. O., Sangalli, L. M., & Srivastava, A. (2014). Statistics of time warpings and phase variations. Electronic Journal of Statistics, 8(2), 1697-1702 (cited 11/25/14)
  • Marron, J. S., Todd, M. J. and Ahn, J. (2007) Distance Weighted Discrimination, to appear in the Journal of the American Statistical Association(cited 10/14/14)
  • Marron, J. S., & Wand, M. P. (1992). Exact mean integrated squared error. The Annals of Statistics, 712-736 (cited 9/4/14)
  • McLachlan, G. J. (2004) Discriminant Analysis and Statistical Pattern Recognition, Wiley-Interscience (cited 9/18/14)
  • Miedema, J., Marron, J. S., Niethammer, M., Borland, D., Woosley, J., Coposky, J. & Thomas, N. E. (2012). Image and statistical analysis of melanocytic histology. Histopathology, 61(3), 436-444 (cited 10/14/14)
  • Milasevic, P. and Ducharme, J. R. (1987) Uniqueness of the spatial median, Annals of Statistics, 15, 1332-1333 (cited 8/28/14)
  • Oja, H. (2010) Multivariate Nonparametric Methods with R: An approach based on spatial signs and ranks, Springer Lecture Notes in Statistics 199 (cited 9/2/14)
  • Owen M. & Provan, J. S. (2011) A Fast Algorithm for Computing Geodesic Distances in Tree Space, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 8, 2-13 (cited 12/02/14)
  • Owen, S. J. (1998) A survey of Mesh Generation Technology, http://www.imr.sandia.gov/papers/imr7/owen_meshtech98.ps.gz (cited 11/13/14)
  • Pearson, K. (1901) On Lines and Planes of Closest Fit to Systems of Points in Space, Philosophical Magazine, 2, 559-572 (cited 8/19/14)
  • Pizer, S. M., Vicory, J., Goswami, D., Marron, J. S., Damon, J., Chaudhuri, R., Jung, S., Zhao, X. S. and Huckemann, S. (2012) Nested Sphere Statistics of Skeletal Models, in M. Breuß, A. Bruckstein, P. Maragos (eds.), Innovations for Shape Analysis: Models and Algorithms, to appear in the Springer series Mathematics and Visualization (cited 11/18/14)
  • Ramsay, J. O. & Silverman, B. W. (2005) Functional Data Analysis, 2nd Edition, Springer, N.Y. ISBN 0-387-40080-X (cited 8/19/14)
  • Ramsay, J. O. & Silverman, B. W. (2002) Applied Functional Data Analysis, Springer, N.Y. ISBN 0-387-95414-7 (cited 8/19/14)
  • Ramsay, J. O. (2005) Functional Data Analysis Web Site, http://www.psych.mcgill.ca/misc/fda/ (cited 8/19/14)
  • Rao, C. R. (1958) Some statistical methods for comparison of growth curves, Biometrics, 14, 1-17 (cited 9/11/14)
  • Rondonotti, V., Marron, J. S., & Park, C. (2007). SiZer for time series: a new approach to the analysis of trends. Electronic Journal of Statistics, 1, 268-289 (cited 9/4/14)
  • Rousseeuw, P. J., & Leroy, A. M. (2005). Robust regression and outlier detection (Vol. 589). John Wiley & Sons (cited 8/28/14)
  • Roweis, S. and Saul, L. (2000) Nonlinear dimensionality reduction by locally linear embedding, Science, 290, 2323-2326 (cited 11/18/14)
  • Royer, J.-Y. and Chang, T. (1991) Evidence for relative motions between the Indian and Australian Plates during the last 20 m.y. from plate tectonic reconstructions: Implications for the deformation of the Indo-Australian Plate, Journal of Geophysical Research, 96(B7), 11,779–11,802, doi:10.1029/91JB00897 (cited 11/18/14)
  • Sarle, W. S., and Kuo, A. H. (1993), The MODECLUS Procedure, Technical Report P-256, SAS Institute Inc., Cary  (cited 10/23/2014)
  • Schmitz, H. P. and Marron, J. S. (1992) Simultaneous estimation of several size distributions of  income, Econometric Theory, 8, 476-488  (cited 9/4/14)
  • Schölkopf, B., Smola, A., & Müller, K. R. (1998). Nonlinear component analysis as a kernel eigenvalue problem. Neural computation, 10(5), 1299-1319 (cited 10/9/14)
  • Schölkopf, B., Smola, A. and Müller, K. R. (1998) Nonlinear component analysis as a kernel eigenvalue problem, Neural Computation, 10, 1299-1319 (cited 10/9/14)
  • Schwiegerling, J., Greivenkamp, J. E., & Miller, J. M. (1995) Representation of videokeratoscopic height data with Zernike polynomials. JOSA A, 12(10), 2105-2113 (cited 8/28/14)
  • Sen, S. K., Foskey, M., Marron, J. S., & Styner, M. A. (2008) Support vector machine for data on manifolds: An application to image analysis. In Biomedical Imaging: From Nano to Macro, 2008. ISBI 2008. 5th IEEE International Symposium on (pp. 1195-1198). IEEE (cited 11/18/14)
  • Skwerer, S., Bullitt, E., Huckemann, S., Miller, E., Oguz, I., Owen, M., … & Marron, J. S. (2013). Tree-oriented analysis of brain artery structure. Journal of Mathematical Imaging and Vision, 1-18 (cited 12/02/14)
  • Siddiqi, K. and Pizer, S. M. (2007) Medial Representations Mathematics Algorithms and Applications, Springer, New York (cited 11/13/14)
  • Spellman, P. T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.O., Botstein, D. and Futcher, B. (1998) Comprehensive Identification of Cell Cycle-regulated Genes of the Yeast Saccharomyces cerevisiae by Microarray Hybridization, Molecular Biology of the Cell, 9, 3273-3297 (cited 8/26/14)
  • Staudte, R. G. and Sheather, S. J. (1990) Robust Estimation and Testing, Wiley, New York (cited 8/28/14)
  • Tenenbaum, J. B., de Silva, V. and Langford, J. (2000) A global geometric framework for nonlinear dimensionality reduction. Science, 290, 2319-2322 (cited 11/18/14)
  • Vapnik, V, N. (1982) Estimation of dependences based on empirical data, Springer (Russian version, 1979) (cited 10/9/14)
  • Vapnik, V. N. (1995) The nature of statistical learning theory, Springer (cited 10/9/14)
  • Wand, M. P. & Jones, M. C. (1994) Kernel Smoothing, Chapman & Hall/CRC, ISBN: 0412552701  (cited 9/4/14)
  • Wang, H. and Marron, J. S. (2007) Object oriented data analysis: sets of trees, Annals of Statistics, 35, 1849-1873  (cited 8/19/14, 12/02/14)
  • Wang, Y., Marron, J. S., Aydin, B., Ladha, A., Bullitt, E., & Wang, H. (2012). A nonparametric regression model with tree-structured response. Journal of the American Statistical Association, 107(500), 1272-1285 (cited 12/02/14)
  • Wei, S., Lee, C., Wichers, L., Li, G., and Marron, J.S. (2013) Direction-projection-permutation for high dimensional hypothesis tests, arXiv preprint arXiv:1304.0796 (cited 10/23/14)
  • Yata, K., & Aoshima, M. (2010). Effective PCA for high-dimension, low-sample-size data with singular value decomposition of cross data matrix. Journal of multivariate analysis, 101(9), 2060-2077 (cited 11/11/14)
  • Yata, K., & Aoshima, M. (2012). Effective PCA for high-dimension, low-sample-size data with noise reduction via geometric representations. Journal of multivariate analysis, 105(1), 193-215 (cited 10/30/14)
  • Yushkevich, P., Pizer, S. M., Joshi, S., and Marron, J. S. (2001) Intiutive, localized analysis of shape variability, Information Processing in Medical Imaging (IPMI), eds. Insana, M. F. and Leahy, R. M. 402-408 (cited 11/13/14)
  • Zhang, L., Marron, J. S., & Lu, S. (2013). Nested Nonnegative Cone Analysis. arXiv preprint arXiv:1308.4206 (cited 11/18/14)
  • Zhao, X., Marron, J.S. and Wells, M.T. (2004) The Functional Data View of Longitudinal Data, Statistica Sinica, 14, 789-808 (cited 8/26/14, 9/11/14)

 

Course Information:

Class Meetings:

Tuesday – Thursday 12:30 – 1:45,   Hanes Hall 125

Instructor:

J. S. Marron, Professor

Email:

marron@unc.edu

Office:

Hanes Hall 352    (in back hall behind central open area)

Phones:

Office:    919-962-2188
Home:    919-493-2844

Office hours:

When I am in my office (usually M, T, Th, priority to those with appointments)